TRY SOME OF THESE PROBLEMS - GOOD PRACTICE FOR ESPECIALLY 4751,53 Exercises 04/ THE QUIZ!

38. Ethyl acetate is synthesized in a nonreacting solvent (not er) according to the following reaction:

$$CH_3CO_2H + C_2H_5OH \Longrightarrow CH_3CO_2C_2H_5 + H_2O$$

Acetic acid Ethanol Ethyl acetate

$$K = 2.2$$

For the following mixtures (a-d), will the concentration of H₂O increase, decrease, or remain the same as equilibrium is established?

- a. $[CH_3CO_2C_2H_5] = 0.22 M$, $[H_2O] = 0.10 M$, $[CH_3CO_2H] = 0.010 M$, $[C_2H_5OH] = 0.010 M$
- **b.** $[CH_3CO_2C_2H_5] = 0.22 M$, $[H_2O] = 0.0020 M$, $[CH_3CO_2H] = 0.0020 M$, $[C_2H_5OH] = 0.10 M$
- c. $[CH_3CO_2C_2H_5] = 0.88 M$, $[H_2O] = 0.12 M$, $[CH_3CO_2H] = 0.044 M$, $[C_2H_5OH] = 6.0 M$
- d. $[CH_3CO_2C_2H_5] = 4.4 M$, $[H_2O] = 4.4 M$, $[CH_3CO_2H] = 0.88 M$, $[C_2H_5OH] = 10.0 M$
- e. What must the concentration of water be for a mixture with $[CH_3CO_2C_2H_5] = 2.0 M$, $[CH_3CO_2H] = 0.10 M$, $[C_2H_5OH] = 5.0 M$ to be at equilibrium?
- f. Why is water included in the equilibrium expression for this reaction?
- The equilibrium constant, K, for the reaction

$$H_2(g) + F_2(g) \Longrightarrow 2HF(g)$$

has the value 2.1×10^3 at a particular temperature. When the system is analyzed at equilibrium at this temperature, the contrations of $H_2(g)$ and $F_2(g)$ are both found to be 0.0021 M. Lat is the concentration of HF(g) in the equilibrium system under these conditions?

0. The reaction

$$2NO(g) + Br_2(g) \Longrightarrow 2NOBr(g)$$

has $K_p = 109$ at 25°C. If the equilibrium partial pressure of Br₂ is 0.0159 atm and the equilibrium partial pressure of NOBr is 0.0768 atm, calculate the partial pressure of NO at equilibrium.

41. A 1.00-L flask was filled with 2.00 mol gaseous SO₂ and 2.00 mol gaseous NO₂ and heated. After equilibrium was reached, it was found that 1.30 mol gaseous NO was present. Assume that the reaction

$$SO_2(g) + NO_2(g) \Longrightarrow SO_3(g) + NO(g)$$

occurs under these conditions. Calculate the value of the equilibrium constant, K, for this reaction.

A sample of $S_8(g)$ is placed in an otherwise empty rigid container at 1325 K at an initial pressure of 1.00 atm, where it decomposes to $S_2(g)$ by the reaction

$$S_8(g) \iff 4S_2(g)$$

At equilibrium, the partial pressure of S_8 is 0.25 atm. Calculate K_p for this reaction at 1325 K.

43. At a particular temperature, 12.0 mol of SO₃ is placed into a 3.0-L rigid container, and the SO₃ dissociates by the reaction

$$2SO_3(g) \Longrightarrow 2SO_2(g) + O_2(g)$$

At equilibrium, 3.0 mol of SO_2 is present. Calculate K for this reaction.

44. At a certain temperature, 4.0 mol NH₃ is introduced into a 2.0-L container, and the NH₃ partially dissociates by the reaction

$$2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$$

At equilibrium, 2.0 mol NH_3 remains. What is the value of K for this reaction?

45. At a particular temperature, K = 3.75 for the reaction

$$SO_2(g) + NO_2(g) \Longrightarrow SO_3(g) + NO(g)$$

If all four gases had initial concentrations of 0.800 M, calculate the equilibrium concentrations of the gases.

46. At a particular temperature, $K = 1.00 \times 10^2$ for the reaction

$$H_2(g) + I_2(g) \Longrightarrow 2HI(g)$$

In an experiment, 1.00 mol H₂, 1.00 mol I₂, and 1.00 mol HI are introduced into a 1.00-L container. Calculate the concentations of all species when equilibrium is reached.

47. A 2200°C, $K_p = 0.050$ for the reaction

$$N_2(g) + O_2(g) \Longrightarrow 2NO(g)$$

What is the partial pressure of NO in equilibrium with N_2 and O_2 that were placed in a flask at initial pressures of 0.80 and 0.20 atm, respectively?

48. At 25°C, K = 0.090 for the reaction

$$H_2O(g) + Cl_2O(g) \Longrightarrow 2HOCl(g)$$

Calculate the concentrations of all species at equilibrium for each of the following cases.

- a. 1.0 g H₂O and 2.0 g Cl₂O are mixed in a 1.0-L flask.
- b. 1.0 mol pure HOCl is placed in a 2.0-L flask.
- 49. At 1100 K, $K_p = 0.25$ for the reaction

$$2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$$

Calculate the equilibrium partial pressures of SO_2 , O_2 , and SO_3 produced from an initial mixture in which $P_{SO_2} = P_{O_2} = 0.50$ atm and $P_{SO_3} = 0$. (*Hint:* If you don't have a graphing calculator, then use the method of successive approximations to solve, as discussed in Appendix 1.4.)

50. At a particular temperature, $K_p = 0.25$ for the reaction

$$N_2O_4(g) \iff 2NO_2(g)$$

a. A flask containing only N₂O₄ at an initial pressure of 4.5 atm is allowed to reach equilibrium. Calculate the equilibrium partial pressures of the gases.

- b. A flask containing only NO₂ at an initial pressure of 9.0 atm is allowed to reach equilibrium. Calculate the equilibrium partial pressures of the gases.
- c. From your answers to parts a and b, does it matter from which direction an equilibrium position is reached?

$$35^{\circ}$$
C, $K = 1.6 \times 10^{-5}$ for the reaction

$$2NOCl(g) \iff 2NO(g) + Cl_2(g)$$

Calculate the concentrations of all species at equilibrium for each of the following original mixtures.

- a. 2.0 mol pure NOCl in a 2.0-L flask
- b. 1.0 mol NOCl and 1.0 mol NO in a 1.0-L flask
- c. 2.0 mol NOCl and 1.0 mol Cl₂ in a 1.0-L flask
- **52.** At a particular temperature, $K = 4.0 \times 10^{-7}$ for the reaction

$$N_2O_4(g) \iff 2NO_2(g)$$

In an experiment, 1.0 mol N_2O_4 is placed in a 10.0-L vessel. Calculate the concentrations of N_2O_4 and NO_2 when this reaction reaches equilibrium.

particular temperature, $K = 2.0 \times 10^{-6}$ for the reaction

$$2CO_2(g) \Longrightarrow 2CO(g) + O_2(g)$$

If 2.0 mol CO₂ is initially placed into a 5.0-L vessel, calculate the equilibrium concentrations of all species.

54. Lexan is a plastic used to make compact discs, eyeglass lenses, and bullet-proof glass. One of the compounds used to make Lexan is phosgene (COCl₂), an extremely poisonous gas. Phosgene decomposes by the reaction

$$COCl_2(g) \iff CO(g) + Cl_2(g)$$

for which $K_p = 6.8 \times 10^{-9}$ at 100°C. If pure phosgene at an initial pressure of 1.0 atm decomposes, calculate the equilibrium pressures of all species.

55. At 25°C, $K_p = 2.9 \times 10^{-3}$ for the reaction

$$NH_4OCONH_2(s) \Longrightarrow 2NH_3(g) + CO_2(g)$$

In an experiment carried out at 25°C, a certain amount of NH₄OCONH₂ is placed in an evacuated rigid container and allowed to come to equilibrium. Calculate the total pressure in the container at equilibrium.

56. The gas arsine, AsH₃, decomposes as follows:

$$2AsH_3(g) \rightleftharpoons 2As(s) + 3H_2(g)$$

In an experiment at a certain temperature, pure $AsH_3(g)$ was placed in an empty, rigid, sealed flask at a pressure of 392.0 torr. After 48 hours the pressure in the flask was observed to be constant at 488.0 torr.

- a. Calculate the equilibrium pressure of $H_2(g)$
- **b.** Calculate K_p for this reaction.

Le Châtelier's Principle

57. Suppose the reaction system

$$UO_2(s) + 4HF(g) \Longrightarrow UF_4(g) + 2H_2O(g)$$

has already reached equilibrium. Predict the effect that e of the following changes has on the equilibrium position, whether the equilibrium will shift to the right, will shift to the right, or will not be affected.

- a. Additional $UO_2(s)$ is added to the system.
- b. The reaction is performed in a glass reaction vessel; HP attacks and reacts with glass.
- c. Water vapor is removed.
- 58. Predict the shift in the equilibrium position that will occur each of the following reactions when the volume of the retion container is increased.
 - **a.** $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$
 - **b.** $PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$
 - c. $H_2(g) + F_2(g) \Longrightarrow 2HF(g)$
 - **d.** $COCl_2(g) \iff CO(g) + Cl_2(g)$
 - e. $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$
- An important reaction in the commercial production of drogen is

$$CO(g) + H_2O(g) \Longrightarrow H_2(g) + CO_2(g)$$

How will this system at equilibrium shift in each of the following cases?

- a. Gaseous carbon dioxide is removed.
- b. Water vapor is added.
- c. The pressure is increased by adding helium gas.
- d. The temperature is increased (the reaction is exother
- The pressure is increased by decreasing the volume or reaction container.
- 60. What will happen to the number of moles of SO₃ in equivalent rium with SO₂ and O₂ in the reaction

$$2SO_3(g) \iff 2SO_2(g) + O_2(g)$$
 $\Delta H^{\circ} = 197 \text{ kg}$

in each of the following cases?

- a. Oxygen gas is added.
- b. The pressure is increased by decreasing the volume of reaction container.
- c. The pressure is increased by adding argon gas.
- d. The temperature is decreased.
- e. Gaseous sulfur dioxide is removed.
- 61. In which direction will the position of the equilibrium

$$2HI(g) \Longrightarrow H_2(g) + I_2(g)$$

be shifted for each of the following changes?

- **a.** $H_2(g)$ is added.
- **b.** $I_2(g)$ is removed.
- c. HI(g) is removed.

