| Reaction Order | Differential Rate Law | Integrated Rate Law | Linear Form |
Characteristic Kinetic Plot |
Half-life Expression |
Units of Rate Constant |
||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Zero |
|
[A] = [A]0 - k t | [A] = -k t + [A]0 | [A] vs t |
|
mole L-1 sec-1 | ||||||||||
| First |
|
[A] = [A]0 e- k t | ln[A] = -kt + ln[A]0 | ln [A] vs t |
|
sec-1 | ||||||||||
| Second |
|
|
|
1/[A] vs t |
|
L mole-1 sec-1 |
The series of three graphs shown below illustrate the use of the characteristic kinetic plots. The graph on the left shows [A] vs t plots for a zero-order (red line), first-order (green line), and second-order (blue line) reaction. The graph in the middle shows ln [A] vs t plots and the graph on the right shows 1/[A] vs t plots for each reaction order.

–d[A]
(1) rate = ————— = k
dt
Differential Rate Law(2) d[A] = –kdt
(3) |
[A] | t | ||||
| ∫ | d[A] | = –k | ∫ | dt | ||
|
|
||||||
| [A]0 | 0 |
(4) [A] – [A]0 = –kt
(5) [A] = –kt + [A]0Integrated rate law (linear form)
| Remember: |
|||
| ∫ | dx | = x | |
–d[A]
(1) rate = ————— = k[A]
dt
Differential Rate Law
d[A]
(2) ------ = –kdt
[A]
(3) |
[A] | t | |||
| ∫ | d[A] | = –k | ∫ | dt | |
———— |
|||||
| [A] | |||||
| [A]0 | 0 |
(4) ln[A] – ln[A]0 = –kt
(5) ln[A] = –kt + ln[A]0Integrated rate law (linear form)
| Remember: |
|||
| ∫ | dx | = ln(x) | |
———— | |||
| x |
–d[A]
(1) rate = ————— = k[A]2
dt
Differential Rate Law
– d[A]
(2) ------ = kdt
[A]2
(3) |
[A] | t | |||
| – ∫ | d[A] | = k | ∫ | dt | |
———— |
|||||
| [A]2 | |||||
| [A]0 | 0 |
(4) –((–1/[A]) – (–1/[A]0)) = kt
(5) (1/[A]) – (1/[A]0) = kt
(6) (1/[A]) = kt + (1/[A]0)Integrated rate law (linear form)
| Remember: |
|||
| ∫ | dx | 1 | |
———— | = – ——— | ||
| x2 | x |
| Order | Sample Rate Law | Units |
| 0 | rate = k | M/s or M s–1 |
| 1 | rate = k[A]1 | 1/s or s–1 |
| 2 | rate = k[A]2 | 1/(M s) or M–1 s–1 |