Notes-Gravity
When we look up into the stars, we see essentially the same universe that has been visible to all of mankind, for all of our history. We wonder: How did those guys figure out all this stuff? Who was the first to prove that the Earth was round? Most people would answer this as Christopher Columbus, in 1492.
Actually, it all started with the Greeks about 2200 years ago. A philosopher named Eratosthenes (era-toss-the-knees) (276-194B.C.) was the first to calculate the size of the Earth, using only a protractor and some string!

How did he accomplish this amazing feat? Well, first of all, the Greeks started with some assumptions, based on their observations of their world.

Assumption #1: The Greeks assumed that the Earth was spherical. What would lead them to this assumption? We know that the thought that the Earth was flat persisted up until the 1500s, yet the Greeks knew this 2200 years ago. How? Well, they were attuned to their environment, and as a matter of fact philosophers of that time developed what they called Natural Philosophy, which is the study of the Earth and nature through reasoning. We call this science today. They believed that observing nature would lead them to correct deductions about their world, and thus they could learn about how to live their lives. By observing the world, they noticed three things that led them to believe the Earth was round:
1. Sailing ships appeared on the horizon from the tip of their mast first, then the rest of the mast was visible, and last the hull of the ship was visible. Only a curved ocean surface caused by a round Earth could produce this effect.

2. The shadow of the Earth was circular. By observing an eclipse of the moon, when the Earth’s shadow falls on the moon, the Greeks could easily see that the Earth’s profile was round. The most obvious three dimensional object that is round is a sphere.
3. Latitude. At different latitudes on the Earth, the sun appeared at different heights in the sky. A flat Earth would not do this. Only a spherical planet could produce this effect.

Assumption #2: The sun’s rays are parallel when they hit the Earth. The Greeks knew this because they looked at the shadows of objects on Earth. Shadows caused by the sun do not grow or diminish in size, and thus they must be made up of parallel rays. Note: While a shadow may grow longer in the morning or late afternoon, this is due to the angle of the rays and the way the shadow hits the ground, not the changing size of the shadow. If you look at your own shadow, it always appears the same size, no matter what the angle it is projected onto.)

Eratosthenes knew of a well in Syene, Egypt, where the sun’s rays hit the bottom of a well on one and only one day out of the year. In 200 B.C., this was an amazing event, since most wells were so deep that the sun never struck the bottom of the well. We know now that Syene lies on the Tropic of Cancer, the only place where this would occur only one day out of the year in the Northern hemisphere. Eratosthenes visited the well to confirm this, and on the same day the next year, he measured the angle made between the sun’s rays and a vertical wall in Alexandria, Egypt. This angle was exactly 7 degrees. Eratosthenes then set up the following picture of what was happening:
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From geometry, he knew that if the angle made by the sun’s rays with the wall in Alexandria was 7 degrees, then that was the same angle made between two radii of the Earth, one going from the center of the Earth to Alexandria, and one going from the center of the Earth to Syene. 
At this time, the Egyptian army was very good at measuring distances. They had accurately measured distances in Egypt (so that they could maneuver well in battle) and had measured the distance from Alexandria to Syene to be 5000 stadia. A stadium is an ancient unit of measure. In our measurement system, this comes out to 800 km. Then, he set up a simple ratio.
Earth’s circumference is to 800km as 360 degrees is to 7 degrees. Then he could solve for the Earth’s circumference, and thus the radius of the Earth:


2πRE    =  
 3600

800km
70
so, RE = 360∙800,000/(7∙2∙π)  = 6.56 x 106 meters. (Make the students calculate this.)

The accepted value today is 6.38 x 106 meters. Can you calculate a % error? (Make the students do this.)

Less than 3% error with only a protractor and string to measure angles and distance!

Other Greeks also measured the size of the moon. How? The moon is a long way away!

They used an eclipse to do this! A picture of what happened is below:
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The Greeks used Eratosthenes’ value for the radius of the Earth in this calculation. They also measured the time (with an hourglass) that it took for the moon to do two things:

1. The time from when the moon first entered the Earth’s shadow until it was entirely in the shadow was measured as 5 minutes (1/12 hour). This equates to the time it takes for the moon to travel the diameter of the moon.
2. The time from when the moon first enters the Earth’s shadow until it first starts to leave the earth’s shadow was timed as 18 minutes (3/10 hour). This distance is equivalent to the Earth’s diameter.
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Now, they knew that they could find the diameter of the moon by setting up another simple ratio:

18 minutes      =    1.3 x 107 m
            5 minutes

Dmoon    

Solving for the diameter and dividing by two, they got


Rmoon  = 1.8 x 106 m.

The accepted value today is 1.74 x 106 m. Compute the % error.

Next, they computed how far away the moon is from the Earth.

How, you say? Well, it’s as simple as π (or some other trig quantity)!

Once they knew the size of the moon, the distance to the moon was easy. They just measured how much space the moon took up in the sky and extrapolated from that.

They measured the angle the moon takes up as 0.5 degrees. From there, it is a simple ratio (again!) to find the distance to the moon.

Setting this up:

2πRm    
=  
 3600




3.6 x 106 m

   0.50
 Solving for  Rm  =  4.0 x 108 m.

Our value today is 3.8 x 108 m, or roughly 60 x the radius of the Earth.

All this done before lasers, telescopes, radios, or watches!

As history progressed, much of this was lost during the middle ages, but Newton actually used the Greek’s calculations when he came up with his Universal Law of Gravitation in the 1800s.
At this point, it would be good to get a sense for the large numbers we will be using in this unit. The best illustration of this is found in a video called “Powers of Ten” which was produced in the seventies by two researchers from IBM. (Show 10 minute video-can be found on Google videos or youtube.) This illustrates the difference that one power of ten can make in a calculation. The great thing about the video is how it has become part of the culture of the US—most students in the 70s, 80s and 90s saw the video as students. Thus it has been parodied in pop culture, such as the introduction to the Simpsons and in the movie Men In Black. You can show these videos as well for the class, as they are quite good and funny. Again, I found them on youtube.

 Now we are ready to look at the rest of the solar system, and see what it looks like. The problem with most science instruction and science instructional materials is that the solar system is always portrayed incorrectly to students. If you look at any (and I do mean any) map of the solar system on the internet, you will see all the planets in order and lined up, as they almost never are. They are also almost always not shown to scale, even in size. Sometimes the relative sizes are not even right. The relative distances are always inaccurate, due to their vast nature. I always show three or four examples and go on a tirade about how they are teaching people the wrong things, giving false impressions, etc. It’s amazing how even NASA falls into this category. The materials meant for little kids are always the worst, with stuff floating around in space like it’s as cluttered as a junkyard. 
Well, we are going to do an activity that will help you understand the real size of the solar system. We will construct a scale model of the solar system as a class. The beauty of the scale model is that if you put yourself inside the model, everything appears as it really is. Put yourself at the scaled Earth, and all the objects appear as they do in life. You will want to place a marble somewhere in the room and designate that as the Earth. All planets as well as the sun will be scaled from this object. The work in looking at the Greek’s calculations will now be seen as good practice for this, as we will use another simple ratio in calculating the scale sizes of the planets and their position relative to the sun. 
To calculate the distances, simply set up a ratio:

scale size Earth’s diameter   =   _____x______

real size Earth’s diameter

real dimension 

where x is the scaled dimension of whatever you put in as a real dimension. If you put in the real diameter of Jupiter, solving for x yields the scale size of Jupiter. 

Have the students calculate and make their planets in pairs, so each planet is covered as well as the sun and the moon. The sun will have to be 2-dimensional, but everything else should be 3-d. I have them find out where the planets are supposed to be and place them there after school. I have maps made with miles and kilometers marked out for them to use to find where to put the planets. I then drive around after school and confirm where they are and pick them up, as leaving then there may cause problems if left for more than a day. This activity should take 2-3 periods, as some groups will be faster than others, as the group with the sun has to get their work done before others can measure where to put their planets. The sun ends up somewhere out on the football field (depending on the size of the Earth) and Venus and Mercury are inside the building. Pluto ends up out past Dunstan Corner.
Before Newton, there were several significant discoveries that contributed to our overall knowledge, mostly due to the invention of the telescope by Galileo.

Tycho Brahe (1564-1601) took incredibly precise measurements of the planetary positions and took on a student, Johannes Kepler (1571-1630).

Kepler came up with 3 laws that governed the motion of the planet Mars, simply from analyzing the data collected by Brahe. Kepler was the consummate mathematician, and he searched for mathematical models that fit the data he knew to be true, much as we look for mathematical relationships when we do labs in physics. These 3 laws were later found to explain the motion of all planets and comets. 

They are:

1. The planets move in orbits that are ellipses, with one of the foci of the ellipses located at the sun. (The Law of Ellipses)
2. An imaginary line drawn from the center of the sun to the center of the planet will sweep out equal areas in equal intervals of time. (The Law of Equal Areas)

3. The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun. (The Law of Harmonies) 
Use these three laws to answer the questions on the handout titled “Kepler’s Laws”. I told them the last three questions were research questions and were extra credit. I helped them with the first 6 in class.
Kepler had no idea what kept the planets moving in their orbits, he just derived equations that explained and predicted their motion. It wasn’t until Newton came along that scientists came up with a theory to explain why the planets moved as they do.

Newton observed an apple’s fall toward the Earth and looked for something that would describe the pull that he knew was present in this motion. He reasoned that a cannonball that was fired from on top of a high mountain might fall toward the Earth at a rate that just compensates for the curvature of the Earth, if it was fired at a fast enough speed. Thus a cannon ball could become a satellite of the earth, if launched correctly. He then deduced that the motion of the moon must be similar, in that its speed must be sufficient to compensate for the centripetal force that must be present to keep it in (nearly) circular motion, which we know we must have. He thus drew a parallel between the motion of satellites and circular motion. Newton, like most scientists even to this day, did not know what caused this force. He only called it “Universal Gravitation” because it applied to all objects that had mass, whether they were planets or apples. 

Newton used Kepler’s third law to derive his law of universal gravitation. You will work from Newton’s universal gravitation law to derive Kepler’s third law in the above and beyond section on one of our worksheets.

Newton’s great discovery was the formula:

Fc  = Gm1m2 / r2 , where Fc is the gravitational attractive force, g is a constant (he didn’t know what it was!), m1 and m2 are the masses of the two objects being attracted, and r is the distance between the objects. He deduced this all from looking at the motions of the planets!
Newton knew the formula, but was still missing something. Until he could actually measure the force between two objects, he had no value for “G”, and thus his equation was relatively useless in explaining the solar system. If he had known the value for “G”, he knew he could calculate the masses of every object in the solar system, using what he knew about their positions and their movement.

Along comes Henry Cavendish (1731-1810), who designs and carries out an experiment to determine “G”. He uses two large spheres and two smaller spheres and determines the gravitational attraction between the two. His setup looked like this:
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This is called a torsion balance, because the torsion, or twist, exerted on the hanging wire measures the force exerted on the bar that holds the two small spheres apart. Since the force of the Earth pulling on the spheres is cancelled out (by the tension in the wire), the only force twisting the bar was the gravitational attractive force between the spheres. In Cavendish’s day, masses could be measured accurately, and using this data coupled with his measured force between the spheres, he calculated the value for “G” to be:
G = 6.67 x 10-11 N-m2/kg2 .

Amazing! Now scientists could measure the masses of the Earth and all objects in the solar system, using this constant and what they knew about the weight of objects on Earth (explain how this might work). For this reason Cavendish’s experiment was called “Weighing the Earth” by the press and was heralded as a breakthrough in knowledge.

We will use this discovery to do some calculations of our own. We will now practice using this formula to calculate the gravitational force between several objects, as well as the masses and distances between some objects. (Hand out Gravity Worksheet).
Now that we know how to calculate forces based on the masses of objects and their relative positions, we can look at what happens on a larger scale, namely the solar system scale. We will visit the library where we will look at a gravity simulation program and see what happens when we change either the mass of objects, the distance from one object to another, or the relative velocity between them.

Go to http://arachnoid.com/gravitation/ and look at the program there. 

Follow the instructions on the handout titled “Gravity Lab.”
When you are done, you should have a greater appreciation for the workings of the solar system.
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