Chemistry 4 2017 - 2018

Course Overview Documents

FIO Class Motto
Late Work
How to Study for Advanced Chemistry
Exam Wrapper
Lab Safety Rules
Lab Notebook Information
Lab Report Writing Information (html)
Real Life Chemistry Assignments
Doing Science
Personal Introduction Essay (doc)


Please read the Copyright and Terms of Use
Search this site:
Custom Search


Chemistry-4 is a rigorous theoretical course in college-level chemistry intended to prepare students for university-level courses in chemistry as required for majors in science, medicine or engineering. Process skills such as analytical thinking, problem solving, making sense out of data, and writing/communication are essential. Depth of coverage and intellectual challenge are more important than breadth of coverage. Therefore I have adopted the following goals for this course:

Instructional Techniques and Assessment

Grades in the course will be broken down as follows:
        Tests: 40% (1 per quarter)
    Quizzes: 30% (4 - 6 per quarter)
          Labs: 30% (4 - 6 2-hr labs per quarter)

The schedule at the end of this introductory material shows what to expect for each unit. Specific dates are not given in the interest of maintaining flexibility. Also in the schedule is recommended Memory Work which are items that you should commit to memory.

For each unit you will be required to complete a brief Outline of the important points in the reading assigned for that unit. This will be submitted through Google Classroom. This Outline must be separated into the sections used in the chapter. Sometimes one or two entries on the Outline will be sufficient for a given section. For other, more complicated sections you will need to use your judgment as to what the most important ideas and problem-solving techniques are. Keep Outlines brief! I require this work to encourage you to prepare thoroughly for class. It’s up to you to make it useful to you. You may never look at it again but the fact that you made it can help you to learn and to read carefully. Outlines should be completed by the first day of a new unit: you must read ahead!

A tip about reading textbooks: they are not novels. In a novel you typically read a passage once with full comprehension. The action carries you forward through the text. Textbooks build sequentially in each chapter and you will at times need to read a section several times—and work through its examples on paper— before you can move on to the next section. Be self-aware and check in with yourself: Did I understand that passage? Could I solve problems based on it?

Each unit has a Problem Set that consists of questions and problems from the ends of the chapters. At times I will assign problems from supplementary material for the Problem Set. The problems are a tool you will use to learn new material: you will not immediately know how to solve each problem no matter how well you pay attention and take notes in class. These problem sets can be approached in several ways:

  1. You will work independently to solve the problems using only your brain, the text, a calculator and paper and pencil.
  2. You will work in study groups outside of class to help one another to solve the problems. Use this time not to copy another student’s solution but to compare notes about the best way to get to a solution.
  3. You will come to your teacher during Advisory to work on problems so that you can check solutions and ask questions.

Outlines will be checked for completeness and count for 1/10 of a quiz grade. Problem sets will be checked using a homework quiz. Prior to the quiz you will be required to be able to present to the class a solution to a random problem.

The date of the Homework Quiz will be set whenever we begin a new unit. The Homework Quiz will draw on problems directly from your homework and will be short.

Test dates will be near the end of each quarter.

page break

Tests will be comprehensive and will be designed to be completed in one hour.

Labs will be offered four to six times each quarter. Lab assignments will vary in scope but at minimum will require completion of pre-lab work by the first day of work and completion of post-lab questions. Two to three times each quarter you will be required to submit a full formal lab report (format available separately). A portion of your lab grade will depend on your diligence in keeping a good scientific lab notebook. Required for this purpose is a permanently bound ruled notebook. In this notebook you will write your lab procedures, lab notes and data while you work in the lab. A handout is available separately that describes how to make good use of your lab notebook.

Study Groups are strongly recommended. During the first week of class you will form study groups of 3 - 4 people. Make a regular time to meet and work on Chemistry together. Working together makes tackling the difficult material of this course a bit more manageable. These groups will continue to work together during class. Re-shuffling of Study Groups will be allowed, if necessary.

Frequently I will ask students to present problems at the board. Presentations will consist in writing out the detailed solution to a problem on the board and explaining how you came to it to the class. The other members of the class are active participants in the process and are expected to ask questions and demand that the presenter justify his or her work. Problem presentations will be a frequent part of this course and will usually precede a Homework Quiz.


In this course our motto is FIO (an acronym that I leave to the reader: you will figure it out if you think about it for a bit).

It is important that you evaluate yourself frequently as you work to find out what you have learned. Try repeating to yourself the contents of class discussions. Even better, go over the concepts and problem-solving techniques with your study group: communicating something you have learned forces you to organize your thoughts about it. When you do so, you learn it better yourself. This is true also about writing in the course. Your lab reports and the answers to lab questions are learning opportunities. When you explain what you have learned in writing you often find that you have not learned it as well as you thought you did. Go back and learn it properly and your writing will improve.


One of the most important ways to improve your grade in my class is to do well on tests and quizzes. In order to encourage you to come in for help with your preparation I will offer 5% in extra credit points on a quiz if you come in at least once to study in my room during office hours and actively ask me questions. This is a great opportunity to get together with friends to come in and ask questions and study together.


Primary textbook: Chemistry: The Central Science, 11th edition, Brown, LeMay, Bursten & Murphy, Pearson Prentice Hall, Upper Saddle River, NJ, 2009.
POGIL Activities for High School Chemistry, Laura Trout, editor. Flinn Scientific, Inc. ©2012
Supplementary Materials available on instructor’s web site (

Quotes from Students

“I think this class has made me more of a self-driven learner. Before this year if I was stuck on a problem I would often wait for the teacher to explain it, but now I take the time and do the work to figure it out on my own. I think this has really improved my learning.”

“This class has changed me as a student because I have had to learn how to do more learning on my own and be efficient in my work so I have time to study.”

“This class has made me realize that some subjects are most effectively learned—or even must be learned—simply by applying new concepts through trial and error (e.g., in the problem sets). I have become a more patient learner because of this class, more willing to blunder around in the dark until things make sense, and more appreciative of the time it takes to develop true understanding.”

“Success in fields like Chemistry has less to do with how many facts you can just rote memorize and more with a willingness to study, think about, and eventually understand fundamental systems.”

“This class has changed me as a student because I had to look at things before tests to not fail them.”

“This class has changed me as a student because it has strengthened my ability to solve problems. I have developed new strategies involving looking at problems from different angles and writing down everything I know first. This has carried through to my other classes”

page break


First Quarter
and Time
Text Information
incl. Problems
Lab(s) Memory Work
Matter and Measurement
Dimensional Analysis, Scientific Notation, Significant Figures, Density, Temperature
Chapter 1
Problem Set: 11 15 17 21 24 26 29 31 33 37 39 40 44 47 53 59 67 72 77
Supplementary Materials:
Metrics Conversions
Dimensional Analysis
Additional Dimensional Analysis Problems
Construction of Square and Cubic Units
Conversions with Square and Cubic Units
Lab Equipment Scavenger Hunt
Observing a Candle
Lab: Measurement and Variation
Precision vs. Accuracy
Density Lab
Lab: Classification of Matter
(all available online)
Tables 1.4, 1.5 and the Rules for Counting Significant Figures (pg 22)
Atomic Structure I:
Basics of Atomic Theory
Chapter 2: 2.1 - 2.5
Problem Set: 9 11 13 15 18 21 22 24 31 33 34 35 37 39 91
Supplementary Material:
Activity: Average Atomic Mass
Homework: Average Atomic Mass
POGIL: Average Atomic Mass
Atomic Structure Activity (unavailable online)
Home-Inquiry Connection Lab: Can Crush
Z, A, Atomic Symbols, Dalton’s Atomic Theory (pg 38)
Molecules, Ions and Naming Compounds Chapter 2: 2.6 - 2.9
Problem Set: 41 42 46 47 49 51 53 57 59 61 65 66 69 71 73 104
Supplementary Material:
POGIL: “Naming Ionic Compounds”
POGIL: “Polyatomic Ions”
POGIL: “ Naming Molecular Compounds”
POGIL: “Naming Acids”
Flowchart for Naming Inorganic Binary Compounds
Chemical Nomenclature
Chemical Formula Combinations Practice
Chemical Formulas Additional Naming Practice
Naming Compounds 1
Naming Compounds 2

Useful Nomenclature Resources:

Here is a big-picture flow-chart to help you determine whether a compound is ionic or molecular and how to name it no matter what it is. It is available as a PDF download at this link: Inorganic Nomenclature Flow Chart. A useful reference for ion names is the ions reference sheet I created.

Useful links from
Cations/Anions List
Nomenclature Basics
How to Name Cations
How to Name Anions
Big Picture Flowchart for Compounds

Lab: Conductivity Names and formulas for all monatomic cations and anions (easily predictable from the periodic table); names and formulas for these ions: copper, iron, ammonium, carbonate, hydrogen carbonate (bicarbonate), chromate, dichromate, cyanide, phosphate, hydrogen phosphate, sulfate, hydrogen sulfate, nitrate, nitrite, permangnate, and peroxide. Also, learn the acetate ion: C2H3O2-; prefixes in table 2.6; how to name acids with and without oxygen
Stoichiometry: Atomic Mass, the Mole, Percent Composition, Chemical Equations Chapter 3: 3.1 - 3.5
Problem Set: 9 11 13 14 15 17 19 21 24 26 29 32 33 35 37 41
43 45 47 49 51 53 54 (Empirical Formulas)
Supplementary Material:
Intro to Chemical Equations
Homework for Balancing Chemical Equations
Chemical Equations from Words (not avail. on line)
POGIL: “Relative Mass and the Mole”
The Mole
Moles Practice Calculations
Homework Assignment: The Mole and Molar Mass
POGIL: “Empirical Formulas”
POGIL: “Combustion Analysis”
Size of an Aluminum Atom
Instructions for the Bunsen Burner
Determination of the Formula of Rust
Hydrate Lab (all available online)
Avogadro’s number (6.02 × 1023 particles/mole) and its meaning

page break
Second Quarter
and Time
Text Information
incl. Problems
Lab(s) Memory Work
Stoichiometry, Limiting Reagent and Percent Yield Chapter 3: 3.6 - 3.7
Problem Set: 55 57 59 63 66 67 68 70 71 73 74 77 79 80 92 103
POGIL: “Mole Ratios”
Demo: Stoichiometry
Activity: Stoichiometry Start-up
Stoichiometry Activity
Stoichiometry Homework
Activity: Limiting Reactant Demonstration
POGIL: “Limiting and Excess Reactants”
Limiting Reactant Activity
Limiting Reactant Homework
Analysis by Gravimetry  
Aqueous Reactions: Reaction Types, Solutions, Solution Stoichiometry Chapter 4
Problem Set: 11 13 15 19 21 24 27 30 32 35 39 44 45 51 55 59 61 69 73 79 81 83
Supplemental Material:
POGIL: “Types of Chemical Reactions”
POGIL: “Acids and Bases”
POGIL: “Molarity”
Reaction writing and prediction (not available on-line) Descriptive Chemistry Interactive Site
Demonstration: Dancing Flames
Acid-Base Titration
Differences btwn. strong, weak and non-electrolytes; table 4.1 (solubility rules); pg 137 oxidation states rules
Atomic Structure II:
Nucleus, Radioactive Decay, Nuclear Stability, Nuclear Reactions
Chapter 21
Problem Set: 2 3 4 7 11 13 15 17 18 19 25 27 28 31 33 34 35 36 41 57 58
Supplementary Material:
Supplemental Notes on Logarithms and the Derivation of the Radioactive Decay Equation
Half-life Basics Activity
Half-life Activity
(all available online)
Geiger Counter Demonstration
POGIL: Types of Radiation
POGIL: Types of Radioactive Decay
POGIL: Alpha and Beta Decay
POGIL: Nuclear Equations
PhET Radioactive Dating Game

Home-Inquiry: Crystals
Alpha, Beta, and Positron Decay modes; half-life equations, E = Δmc2, Δm = mf - mi

page break
Third Quarter
and Time
Text Information
incl. Problems
Lab(s) Memory Work
Gases: Pressure, Gas Laws, Gas Phase Rxns, Partial Pressures, Kinetic-Molecular Theory Chapter 10.1 - 10.7
Problem Set: 11 17 22 23 25 27 31 33 37 40 43 45 47 51 53 56 59 61 67 71 75 77 Supplementary Material:
Graphing to Find Proportions
POGIL: “Gas Variables”

note: no non-ideal gases
Lab: Boyle’s Law with Vernier Probes (available online)
Molar Volume of a Gas
PV = nRT; P1V1/n1T1 = P2V2/n2T2; Dalton’s Law of Partial Pressures; Definition of Mole Fraction; Molar Vol. 22.41 L at STP
Thermochemistry: Energy, Enthalpy, Calorimetry, Hess’s Law Chapter 5
Problem Set: 5 13 19 23 25 27 29 33 37 41 49 53 54 59 61 63 65 67 69 71
Examples of Calorimetry Calculations
Calorimetry Lab
Demo: Dehydration of Sugar
Demo: Dehydration of Sugar Student Worksheet
Demo: Boiling Acetone at Reduced Pressure Student Worksheet
ΔE = q + w, w = -PΔV, ΔH = q at constant P, Hess’s Law
Electronic Structure of Atoms: EM Radiation, Atomic Spectra, Quantum Mechanics, Orbitals
Chapter 6
Problem Set: 11 15 18 21 25 29 33 35 41 47 50 57 59 61 65 67 79 82 84
Supplementary Material for reference:
Group Activity: Light
Homework: Light
Additional Problems: Light
Activity: Graphing Wavelength, Frequency and Energy
Activity: Electron Configuration
Pre-lab: Flame Tests due on the first day of the lab
Lab: Flame Tests
Lab: Hydrogen Atom Simulator Do problems 1 - 5 for homework. The rest of the questions will be answered using an online simulator (link is on the lab page). (computer lab)
Pre-lab: Atomic Emission lamps due on the day of the lab
Lab: Atomic Emission Lamps
E = hν, c = λν, quantum numbers, electron configuration method
Periodic Trends: Development of the Periodic Table, Effective Nuclear Charge, Ion and Atom Size, Ionization Energy, Electron Affinity, Group Trends Chapter 7
Problem Set: 7 8 10-12 16 17 21 23 25 27 30 31 35 37 38 39 41 43 46 48 51 53 57 59 61 63 64 67 69 71 73 75 77 81 83 92 94
Supplementary Materials:
POGIL: “Photoelectron Spectroscopy”
POGIL: “Periodic Trends”
POGIL: “Advanced Periodic Trends” YouTube Playlist about the Periodicity of the Properties of Elements
Spectrophotometry Basics
trends in ionization energy and atomic radius
Trends for atomic size, ion size, ionization energy, effective nuclear charge, and electron affinity
Fourth Quarter
and Time
Text Information
incl. Problems
Lab(s) Memory Work
Chemical Bonding: Ionic, Covalent, and Metallic Bonds; Lewis Structures, Electronegativity, Bond Strength Chapter 8
Problem Set: Ch. 8: 2 4-6 8 9 13 17 19 21 23 29 32 33 35 36 40 45-47 49 50 53 55 57 58 61 65 67 69 90
POGIL: “Bond Energy”
Activity: Lewis Diagrams
Lewis Diagrams: Molecules to draw
Homework: Drawing Lewis Diagrams
Review of Molecular Compounds including Lewis Diagrams and 3-D Shapes
Lab: Glurch and Oobleck
Lewis Structures method, pg 314 & pg 316
Trends for atomic size, ion size, and electronegativity

Molecular Geometry: VSEPR, Polarity, Valence Bond Theory, Hybrid Orbitals Chapter 9: 9.1 - 9.6
Problem Set: 1 3 4 6 8 12 13 14 15 17 19 23 25 30 31 34 37 38 39 40 43 47 76 82
Supplementary Materials:
POGIL: “Molecular Geometry”
Lewis Diagrams and VSEPR Shapes
Table of VSEPR Shapes and Modifications
Building Models (hands-on covalent bonding activity)
Real Life Chemistry of Marshmallows
VSEPR model method, pg 346
Equilibrium: Equilibrium Constant, Gas Equilibria, Le Châtelier’s Principle
6 hours
Chapter 15
Problem Set: 1 3 5 6 8 9 11 14 16 20 21 25 27 30 33 36 38 40 43 46 49 50 51 54 55 58 61 72 82 Supplementary Materials:
POGIL: “Equilibrium”
Determination of an Equilibrium Constant (Flinn 13) cd 10 and cd 17 Form of the Equilibrium Constant Expression
Kp = K(RT)Δn; Le Châtelier’s Principle
The following chapters will not be covered this year. The information below will not print out when you print the syllabus.
Solutions: Intermolecular Forces and Phase Changes Chapter 11
Problem Set: 1 2 10 12 13 16 17 25 26 30 32 33 37 40 46 47 50 52 54 56 69 74 79 81 83 102
Pre-lab for Size of a Molecule
Size of a Molecule (all available online)
Solutions: Solutions, Solubility, Colligative Properties Chapter 13
Problem Set: TBD
  Π = MRT
Kinetics: Reaction Rates, Rate Laws, Integrated Rate Laws, Reaction Mechanisms
NOTE: This section will not print as we will not cover this material in class this year.
Chapter 14
Problem Set: 1-4 7 8 10 14 17 21 24 29 32 35 38 39 45 46 47 51 53 54 57 59 63 67 69 71 73 77 81
Determination of Reaction Rate/Order (Flinn 12)
Post-lab Questions
Rate Laws Summary (formulas, typical graphs)
Kinetics Information Sheet
Copyright and Terms of Use Last Updated: May 16, 2018