Chemistry 4 2017 - 2018

Course Overview Documents

FIO Class Motto
Late Work
How to Study for Advanced Chemistry
Exam Wrapper
Lab Safety Rules
Lab Notebook Information
Lab Report Writing Information (html)
Real Life Chemistry Assignments
Doing Science
Personal Introduction Essay (doc)


Please read the Copyright and Terms of Use
Search this site:
Custom Search


Chemistry-4 is a rigorous theoretical course in college-level chemistry intended to prepare students for university-level courses in chemistry as required for majors in science, medicine or engineering. Process skills such as analytical thinking, problem solving, making sense out of data, and writing/communication are essential. Depth of coverage and intellectual challenge are more important than breadth of coverage. Therefore I have adopted the following goals for this course:

Instructional Techniques and Assessment

Grades in the course will be broken down as follows:
        Tests: 40% (1 per quarter)
    Quizzes: 30% (4 - 6 per quarter)
          Labs: 30% (4 - 6 2-hr labs per quarter)

The schedule at the end of this introductory material shows what to expect for each unit. Specific dates are not given in the interest of maintaining flexibility. The number of hours of class time for each unit is indicated as a goal. Also in the schedule is recommended Memory Work which are items that you should commit to memory.

For each unit you will be required to complete a brief Outline of the important points in the reading assigned for that unit. This Outline must be separated into the sections used in the chapter. Sometimes one or two entries on the Outline will be sufficient for a given section. For other, more complicated sections you will need to use your judgment as to what the most important ideas and problem-solving techniques are. Keep Outlines brief! This is not meant to be a burden but rather a way to encourage you to prepare thoroughly for class. Outlines should be completed by the first day of a new unit: you must read ahead!

A tip about reading textbooks: they are not novels. In a novel you typically read a passage once with full comprehension. The action carries you forward through the text. Textbooks build sequentially in each chapter and you will at times need to read a section several times—and work through its examples on paper— before you can move on to the next section. Be self-aware and check in with yourself: Did I understand that passage? Could I solve problems based on it?

Each unit has a Problem Set that consists of questions and problems from the ends of the chapters. At times I will assign problems from supplementary material for the Problem Set. These problem sets will be approached in several ways:

  1. You will work independently to solve the problems using only your brain, the text, a calculator and paper and pencil.
  2. You will work in study groups outside of class to help one another to solve the problems. Use this time not to copy another student’s solution but to compare notes about the best way to get to a solution.

Both Outlines and Problem Sets count as Homework. Homework is not collected, graded, or checked off. Instead, you must keep Outlines and Problem Sets neatly in a dedicated binder. At the end of the quarter you must show this binder to the instructor for a Homework Quiz grade. It will be graded on completeness and organization.

The date of the Homework Quiz will be set whenever we begin a new unit. The Homework Quiz will draw on problems directly from your homework and will be short.

Test dates will be near the end of each quarter.

page break

Tests will be comprehensive and will be designed to be completed in one hour.

Labs will be offered four to six times each quarter. Lab assignments will vary in scope but at minimum will require completion of pre-lab work by the first day of work and completion of post-lab questions. Two to three times each quarter you will be required to submit a full formal lab report (format available separately). A portion of your lab grade will depend on your diligence in keeping a good scientific lab notebook. Required for this purpose is a permanently bound ruled notebook. In this notebook you will write your lab procedures, lab notes and data while you work in the lab. A handout is available separately that describes how to make good use of your lab notebook.

Study Groups are strongly recommended. During the first week of class you will form study groups of 3 - 4 people. Make a regular time to meet and work on Chemistry together. Working together makes tackling the difficult material of this course a bit more manageable. These groups will continue to work together during class. Re-shuffling of Study Groups will be allowed, if necessary.

Frequently I will ask students to present problems at the board. Presentations will consist in writing out the detailed solution to a problem on the board and explaining how you came to it to the class. The other members of the class are active participants in the process and are expected to ask questions and demand that the presenter justify his or her work. Problem presentations will be a frequent part of this course and will usually precede a Homework Quiz.


In this course our motto is FIO (an acronym that I leave to the reader: you will figure it out if you think about it for a bit).

It is important that you evaluate yourself frequently as you work to find out what you have learned. Try repeating to yourself the contents of class discussions. Even better, go over the concepts and problem-solving techniques with your study group: communicating something you have learned forces you to organize your thoughts about it. When you do so, you learn it better yourself. This is true also about writing in the course. Your lab reports and the answers to lab questions are learning opportunities. When you explain what you have learned in writing you often find that you have not learned it as well as you thought you did. Go back and learn it properly and your writing will improve.


Primary textbook: Chemistry: The Central Science, 11th edition, Brown, LeMay, Bursten & Murphy, Pearson Prentice Hall, Upper Saddle River, NJ, 2009.
Laboratory Experiments for Advanced Placement Chemistry, 2nd edition, Sally Ann Vonderbrink, Ph.D., Flinn Scientific, Inc., Batavia, IL, 2006.
Supplementary Materials available on instructor’s web site (

page break


First Quarter
and Time
Text Information
incl. Problems
Lab(s) Memory Work
Matter and Measurement
Dimensional Analysis, Scientific Notation, Significant Figures, Density, Temperature
Chapter 1
Problem Set: 11 15 17 21 24 26 29 31 33 37 39 40 44 47 53 59 67 72 77
Supplementary Materials:
Metrics Conversions
Dimensional Analysis
Additional Dimensional Analysis Problems
Construction of Square and Cubic Units
Conversions with Square and Cubic Units
Observing a Candle
Measurement and Significant Figures Lab
Precision vs. Accuracy
Density Lab
(all available on line)
Tables 1.4, 1.5 and the Rules for Counting Significant Figures (pg 22)
Atomic Structure I:
Basics of Atomic Theory
Chapter 2: 2.1 - 2.5
Problem Set: 9 11 13 15 18 21 22 24 33 34 35 37 39
Supplementary Material:
Atomic Structure Activity (unavailable on line)
  Z, A, Atomic Symbols, Dalton’s Atomic Theory (pg 38)
Molecules, Ions and Naming Compounds Chapter 2: 2.6 - 2.9
Problem Set: 41 42 46 47 49 51 53 57 59 61 65 66 69 71 73 104
Supplementary Material:
Chemical Formulas and Compounds
Naming Compounds 1
Naming Compounds 2
(all available on line)
None Names and formulas for all monatomic cations and anions (easily predictable from the periodic table); names and formulas for these ions: copper, iron, ammonium, carbonate, hydrogen carbonate (bicarbonate), chromate, dichromate, cyanide, phosphate, hydrogen phosphate, sulfate, hydrogen sulfate, nitrate, nitrite, permangnate, and peroxide. Also, learn the acetate ion: C2H3O2-; prefixes in table 2.6; how to name acids with and without oxygen
Stoichiometry: Atomic Mass, the Mole, Percent Composition, Chemical Equations Chapter 3: 3.1 - 3.5
Problem Set: 9 11 13 14 15 17 19 21 24 26 29 32 33 35 37 41 43 49 51 53
Supplementary Material:
Intro to Chemical Equations
Homework for Balancing Chemical Equations
Chemical Equations from Words (not avail. on line) The Mole
Moles Practice Calculations
Homework Assignment: The Mole and Molar Mass
Size of an Aluminum Atom (available on line) Avogadro’s number (6.02 × 1023 particles/mole) and its meaning

page break
Second Quarter
and Time
Text Information
incl. Problems
Lab(s) Memory Work
Atomic Structure II:
Nucleus, Radioactive Decay, Nuclear Stability, Nuclear Reactions
Chapter 21
Problem Set: (2 3 4 7 11 15 17 33 50 57 to be done in class)
Supplementary Material:
Introduction to Nuclear Chemistry
Alpha and Beta Radiation
Electron Capture and Positron Radiation
Half-life Activity
Mass Defect & Binding Energy Activity
(all available on line)
Geiger Counter Demonstration Alpha, Beta, and Positron Decay modes; half-life equations, E = mc2
Stoichiometry, Limiting Reagent and Percent Yield Chapter 3: 3.6 - 3.7
Problem Set: 54 55 57 59 63 66 67 68 70 71 73 74 77 79 80 92 103
Supplementary Material:
Demo: Stoichiometry
Stoichiometry Activity
Stoichiometry Homework
Limiting Reagent Activity
Limiting Reagent Homework
Lab: Stoichiometry (available on line)
Instructions for the Bunsen Burner
Lab: Formula of a Hydrate (available on line)
Aqueous Reactions: Reaction Types, Solutions, Solution Stoichiometry Chapter 4
Problem Set: 11 13 15 19 21 24 27 30 32 35 39 44 45 51 55 59 61 69 73 79 81 83
Acid-Base Titration (Peoples 8)
Differences btwn. strong, weak and non-electrolytes; table 4.1 (solubility rules); pg 137 oxidation states rules

page break
Third Quarter
and Time
Text Information
incl. Problems
Lab(s) Memory Work
Gases: Pressure, Gas Laws, Gas Phase Rxns, Partial Pressures, Kinetic-Molecular Theory Chapter 10
Problem Set: 11 17 22 23 25 27 31 33 37 40 43 45 47 51 53 56 59 61 67 71 75 77

note: no non-ideal gases
Boyle’s Law (available on line)
Molar Volume of a Gas (Flinn 8)
PV = nRT; P1V1/n1T1 = P2V2/n2T2; Dalton’s Law of Partial Pressures; Definition of Mole Fraction; Molar Vol. 22.41 L at STP
Thermochemistry: Energy, Enthalpy, Calorimetry, Hess’s Law Chapter 5
Problem Set: 5 13 19 23 25 27 29 33 37 41 49 53 54 59 61 63 65 67 69 71
Examples of Calorimetry Calculations
Calorimetry Lab ΔE = q + w, w = -PΔV, ΔH = q at constant P, Hess’s Law
Electronic Structure of Atoms: EM Radiation, Atomic Spectra, Quantum Mechanics, Orbitals
Chapter 6
Problem Set: 11 15 18 21 25 29 33 35 41 47 50 57 59 61 65 67 79 82 84
Supplementary Material for reference:
Group Activity: Light
Homework: Light
Additional Problems: Light
Activity: Graphing Wavelength, Frequency and Energy
Activity: Electron Configuration
Pre-lab: Flame Tests due on the first day of the lab
Lab: Flame Tests
Lab: Hydrogen Atom Simulator Do problems 1 - 5 for homework. The rest of the questions will be answered using an online simulator (link is on the lab page). (computer lab)
Pre-lab: Atomic Emission lamps due on the day of the lab
Lab: Atomic Emission Lamps
E=mc2, E = hν, c = λν, quantum numbers, electron configuration method
Fourth Quarter
and Time
Text Information
incl. Problems
Lab(s) Memory Work
Periodic Trends: Development of the Periodic Table, Effective Nuclear Charge, Ion and Atom Size, Ionization Energy, Electron Affinity, Group Trends Chapter 7
Problem Set: 7 8 10-12 16 17 21 23 25 27 30 31 35 37 38 39 41 43 46 48 51 53 57 59 61 63 64 67 69 71 73 75 77 81 83 92 94
YouTube Playlist about the Periodicity of the Properties of Elements
Analysis by Gravimetry (Flinn 3) trends in ionization energy and atomic radius
Trends for atomic size, ion size, ionization energy, effective nuclear charge, and electron affinity
Chemical Bonding: Ionic, Covalent, and Metallic Bonds; Lewis Structures, Electronegativity, Bond Strength Chapter 8
Problem Set: Ch. 8: 2 4-6 8 9 13 17 19 21 23 29 32 33 35 36 40 45-47 49 50 53 55 57 58 61 65 67 69 90
Activity: Lewis Diagrams
Lewis Diagrams: Molecules to draw
Lab: Glurch and Oobleck
Lab: Dissolving Sugar
Periodic Trend for Electronegativity
Lewis Structures method, pg 314 & pg 316
Molecular Geometry: VSEPR, Polarity, Valence Bond Theory, Hybrid Orbitals Chapter 9: 9.1 - 9.6
Problem Set: 1 3 4 6 8 12 13 14 15 17 19 23 25 30 31 34 37 38 39 40 43 47 76 82
Lewis Diagrams and VSEPR Shapes
Table of VSEPR Shapes and Modifications
Building Models (hands-on covalent bonding activity)
Cranberry Spectrophotometry: Measuring the Cranberry Juice Concentration of Juice Blends
Lab: Salt, Ice, and the Coldest Mixture
VSEPR model method, pg 346
The following chapters will not be covered this year. The information below will not print out when you print the syllabus.
Solutions: Intermolecular Forces and Phase Changes Chapter 11
Problem Set: 1 2 10 12 13 16 17 25 26 30 32 33 37 40 46 47 50 52 54 56 69 74 79 81 83 102
Pre-lab for Size of a Molecule
Size of a Molecule (all available on line)
Solutions: Solutions, Solubility, Colligative Properties Chapter 13
Problem Set: TBD
  Π = MRT
Kinetics: Reaction Rates, Rate Laws, Integrated Rate Laws, Reaction Mechanisms
NOTE: This section will not print as we will not cover this material in class this year.
Chapter 14
Problem Set: 1-4 7 8 10 14 17 21 24 29 32 35 38 39 45 46 47 51 53 54 57 59 63 67 69 71 73 77 81
Determination of Reaction Rate/Order (Flinn 12)
Post-lab Questions
Rate Laws Summary (formulas, typical graphs)
Kinetics Information Sheet
Copyright and Terms of Use Last Updated: Jun 21, 2017